Course Objectives

To introduce the fundamental concept of data structures and to emphasize the importance of various data structures in developing and implementing efficient algorithms.

Course Outcomes

Upon successful completion of the course, a student will be able to:

- 1. Understand various Data Structures for data storage and processing.
- 2. Realize Linked List Data Structure for various operations
- 3. Analyze step by step and develop algorithms to solve real world problems by implementing Stacks, Queues data structures.
- 4. Understand and implement various searching & sorting techniques.
- 5. Understand the Non-Linear Data Structures such as Binary Trees and Graphs

UNIT-I

Basic Concepts: Pointers and dynamic memory allocation, Algorithm-Definition and characteristics, Algorithm Analysis-Space Complexity, Time Complexity, Asymptotic Notation **Introduction to Data structures:** Definition, Types of Data structure, Abstract Data Types (ADT), Difference between Abstract Data Types, Data Types, and Data Structures.

Arrays-Concept of Arrays, Single dimensional array, Two dimensional array, Operations on arrays with Algorithms (searching, traversing, inserting, deleting)

UNIT-II

Linked List: Concept of Linked Lists, Representation of linked lists in Memory, Comparison between Linked List and Array, Types of Linked Lists - Singly Linked list, Doubly Linked list, Circularly Singly Linked list, Circularly Doubly Linked list;

Implementation of Linked List ADT: Creating a List, Traversing a linked list, Searching linkedlist, Insertion and deletion into linked list (At first Node, Specified Position, Last node), Application of linked lists

UNIT-III

Stacks: Introduction to stack ADT, Representation of stacks with array and Linked List, Implementation of stacks, Application of stacks - Polish Notations - Converting Infix to Post Fix Notation - Evaluation of Post Fix Notation - Tower of Hanoi, Recursion: Concept and Comparison between recursion and Iteration

Queues: Introduction to Queue ADT, Representation of Queues with array and Linked List, Implementation of Queues, Application of Queues Types of Queues- Circular Queues, De-queues, Priority Queue

UNIT-IV

Searching: Linear or Sequential Search, Binary Search and Indexed Sequential Search **Sorting**: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort and Merge Sort

UNIT-V

Binary Trees: Concept of Non- Linear Data Structures, Introduction Binary Trees, Types of Trees, Basic Definition of Binary Trees, Properties of Binary Trees, Representation of Binary Trees, Operations on a Binary Search Tree, Binary Tree Traversal, Applications of Binary Tree. **Graphs:** Introduction to Graphs, Terms Associated with Graphs, Sequential Representation of Graphs, Linked Representation of Graphs, Traversal of Graphs (DFS, BFS), Application of Graphs.

Text Books:

- 1. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publications Pvt Ltd Delhi India.
- 2. A.K. Sharma ,Data Structure Using C, Pearson Education India.
- 3. "Data Structures Using C" Balagurusamy E. TMH

Reference Books

- 1. "Data Structures through C", Yashavant Kanetkar, BPB Publications
- 2. Rajesh K. Shukla, "Data Structure Using C and C++" Wiley Dreamtech Publication.
- Lipschutz, "Data Structures" Schaum's Outline Series, Tata Mcgraw-hill Education (India)Pvt. Ltd.
- 4. Michael T. Goodrich, Roberto Tamassia, David M. Mount "Data Structures and Algorithms in C++", Wiley India.

SUGGESTED CO-CURRICULAR ACTIVITIES & EVALUATION METHODS:

Unit 1: Activity: Algorithm analysis exercises

Evaluation Method: Programming Assignment and Correctness

Unit 2: Activity: Presentations on real-life applications of linked lists

Evaluation Method: Presentation skills or reports

Unit 3: Activity: Role-playing activities for stack operations

Evaluation Method: Problem-solving skills, communication and collaboration abilities.