II Semester Course 3: Problem Solving using C

Credits -3

Course Objectives

- 1. To explore basic knowledge on computers
- 2. Learn how to solve common types of computing problems.
- 3. Learn to map problems to programming features of C.
- 4. Learn to write good portable C programs.

Course Outcomes

Upon successful completion of the course, a student will be able to:

- 1. Understand the working of a digital computer and Fundamental constructs of Programming
- 2. Analyze and develop a solution to a given problem with suitable control structures
- 3. Apply the derived data types in program solutions
- 4. Use the 'C' language constructs in the right way
- 5. Apply the Dynamic Memory Management for effective memory utilization

UNIT-I

Introduction to computer and programming: Introduction, Basic block diagram and functions of various components of computer, Concepts of Hardware and software, Types of software, Compiler and interpreter, Concepts of Machine level, Assembly level and high-levelprogramming, Flowcharts and Algorithms

Fundamentals of C: History of C, Features of C, C Tokens-variables and keywords and identifiers, constants and Data types, Rules for constructing variable names, Operators, Structure of C program, Input /output statements in C-Formatted and Unformatted I/O

UNIT-II

Control statements: Decision making statements: if, if else, else if ladder, switch statements. Loop control statements: while loop, for loop and do-while loop. Jump Control statements: break, continue and goto.

UNIT-III

Derived data types in C: Arrays: One Dimensional arrays - Declaration, Initialization and Memory representation; Two Dimensional arrays -Declaration, Initialization and Memory representation.

Strings: Declaring & Initializing string variables; String handling functions, Character handling functions

UNIT-IV

Functions: Function Prototype, definition and calling. Return statement. Nesting of functions. Categories of functions. Recursion, Parameter Passing by address & by value. Local and Global variables. **Storage classes**: automatic, external, static and register.

Pointers: Pointer data type, Pointer declaration, initialization, accessing values using pointers. Pointer arithmetic. Pointers and arrays, pointers and functions.

UNIT-V

Dynamic Memory Management: Introduction, Functions-malloc, calloc, realloc, free **Structures:** Basics of structure, structure members, accessing structure members, nested structures, array of

structures, structure and functions, structures and pointers. **Unions** - Union definition; difference between Structures and Unions.

Text Books:

- 1. E. Balagurusamy, "Programming in ANSI C", Tata McGraw Hill, 6th Edn, ISBN-13: 978-1-25- 90046-2
- 2. Herbert Schildt, —Complete Reference with C, Tata McGraw Hill, 4th Edn., ISBN- 13: 9780070411838, 2000
- 3. Computer fundamentals and programming in C, REEMA THAREJA, OXFORD UNIVERSITY PRESS

Reference Books

- 1. E Balagurusamy, COMPUTING FUNDAMENTALS & C PROGRAMMING Tata McGraw-Hill, Second Reprint 2008, ISBN 978-0-07-066909-3.
- 2. Ashok N Kamthane, Programming with ANSI and Turbo C, Pearson Edition Publ, 2002.
- 3. Henry Mullish&Huubert L.Cooper: The Spirit of C An Introduction to modern Programming, Jaico Pub. House, 1996.
- 4. Y kanithkar, let us C BPB, 13 th edition-2013, ISBN:978-8183331630,656 pages.

SUGGESTED CO-CURRICULAR ACTIVITIES & EVALUATION METHODS:

Unit 1: Activity: Quiz on computer hardware and software concepts Evaluation Method: Objective-based quiz assessing knowledge and understanding

- Unit 2: Activity: Problem-solving using Decision-Making Statements Evaluation Method: Correctness of decision-making logic
- Unit 3: Activity: Array and String Program Debugging Evaluation Method: Identification and correction of errors in code
- Unit 4: Activity: Pair Programming Exercise on Functions Evaluation Method: Collaboration and Code Quality
- Unit 5: Activity: Structured Programming Assignment Evaluation Method: Appropriate use of structures and nested structures