IV Semester/ BotanyCore Course – 4 Plant Physiology and Metabolism (Total

hours of teaching – 60 @ 04 Hrs./Week) Theory:

Learning outcomes:

On successful completion of this course, the students will be able to;

- Comprehend the importance of water in plant life and mechanisms for transport of water and solutes in plants.
- > Evaluate the role of minerals in plant nutrition and their deficiency symptoms.
- > Interpret the role of enzymes in plant metabolism.
- Critically understand the light reactions and carbon assimilation processes responsible for synthesis of foodin plants.
- > Analyze the biochemical reactions in relation to Nitrogen and lipid metabolisms.
- > Evaluate the physiological factors that regulategrowth and development in plants.
- Examine the role of light on flowering and explain physiology of plants under stress conditions.

Unit – 1: Plant-Water relations

- 1. Importance of water to plant life, physical properties of water, diffusion, imbibition, osmosis. water potential, osmotic potential, pressure potential.
- 2. Absorption and lateral transport of water; Ascent of sap
- 3. Transpiration: stomata structure and mechanism of stomatal movements (K⁺ ion flux).
- 4. Mechanism of phloem transport; source-sink relationships.

Unit – 2: Mineral nutrition, Enzymes and Respiration 14 Hrs.

- 1. Essential macro and micro mineral nutrients and their role in plants; symptoms of mineral deficiency
- 2. Absorption of mineral ions; passive and active processes.
- 3. Characteristics, nomenclature and classification of Enzymes. Mechanism of enzyme action, enzyme kinetics.
- Respiration: Aerobic and Anaerobic; Glycolysis, Krebs cycle; electron transport system, mechanism of oxidative phosphorylation, Pentose Phosphate Pathway (HMP shunt).

10 Hrs.

Unit – 3: Photosynthesis and Photorespiration

- 1. Photosynthesis: Photosynthetic pigments, absorption and action spectra; Red drop and Emerson enhancement effect
- 2. Concept of two photosystems; mechanism of photosynthetic electron transport and evolution of oxygen; photophosphorylation
- 3. Carbon assimilation pathways (C3,C4 and CAM);
- 4. Photorespiration C2 pathway

Unit – 4: Nitrogen and lipid metabolism

- Nitrogen metabolism: Biological nitrogen fixation asymbiotic and symbiotic nitrogen fixing organisms. Nitrogenase enzyme system.
- 2. Lipid metabolism: Classification of Plant lipids, saturated and unsaturated fatty acids.
- 3. Anabolism of triglycerides, β -oxidation of fatty acids, Glyoxylate cycle.

Unit – 5: Plant growth - development and stress physiology 12 Hrs.

- 1. Growth and Development: Definition, phases and kinetics of growth.
- 2. Physiological effects of Plant Growth Regulators (PGRs) auxins, gibberellins, cytokinins, ABA, ethylene and brassinosteroids.
- 3. Physiology of flowering: Photoperiodism, role of phytochrome in flowering.
- 4. Seed germination and senescence; physiological changes.

Text books:

- > Botany IV (Vrukshasastram-II) : Telugu Akademi, Hyderabad
- > Pandey, B.P. (2013) College Botany, Volume-III, S. Chand Publishing, New Delhi
- Ghosh, A. K., K. Bhattacharya &G. Hait (2011) A Text Book of Botany, VolumeIII, New Central Book Agency Pvt. Ltd., Kolkata Books for Reference:
- Aravind Kumar & S.S. Purohit (1998) Plant Physiology Fundamentals and Applications, AgroBotanica, Bikaner

12 Hrs.

12 Hrs.

- Datta, S.C. (2007) Plant Physiology, New Age International (P) Ltd., Publishers, New Delhi
- Hans Mohr & P. Schopfer (2006)Plant Physiology, Springer (India) Pvt. Ltd., New Delhi
- Hans-Walter heldt (2005) Plant Biochemistry, Academic Press, U.S.A.
- Hopkins, W.G. & N.P.A. Huner (2014)Introduction to Plant Physiology, Wiley India Pvt. Ltd., New Delhi
- Noggle Ray & J. Fritz (2013)*Introductory Plant Physiology*, Prentice Hall (India), New Delhi
- Pandey, S.M. &B.K.Sinha (2006)Plant Physiology, Vikas Publishing House, New Delhi
- Salisbury, Frank B. & Cleon W. Ross (2007)*Plant Physiology*, Thomsen & Wadsworth, Austalia&U.S.A
- Sinha, R.K. (2014) Modern Plant Physiology, Narosa Publishing House, New Delhi
- > Taiz, L.&E. Zeiger (2003)Plant Physiology, Panima Publishers, New Delhi
- Verma, V.(2007)*Text Book of Plant Physiology*, Ane Books India, New Delhi Practical Syllabus of BotanyCore Course – 4 / Semester – IV

Plant Physiology and Metabolism

(Total hours of laboratory exercises 30 Hrs. @ 02 Hrs. /Week)

Course outcomes: On successful completion of this practical course, students shall be able to:

- Conduct lab and field experiments pertaining to Plant Physiology, that is, biophysical and biochemical processes using related glassware, equipment, chemicals and plant material.
- 2. Estimate the quantities and qualitative expressions using experimental results and calculations
- 3. Demonstrate the factors responsible for growth and development in plants.

Practical Syllabus

 Determination of osmotic potential of plant cell sap by plasmolytic method using *Rhoeo/ Tradescantia* leaves.

- 2. Calculation of stomatal index and stomatal frequency of a mesophyte and a xerophyte.
- 3. Determination of rate of transpiration using Cobalt chloride method / Ganong's potometer (at least for a dicot and a monocot).
- 4. Effect of Temperature on membrane permeability by colorimetric method.
- 5. Study of mineral deficiency symptoms using plant material/photographs.
- 6. Demonstration of amylase enzyme activity and study the effect of substrate and Enzymeconcentration.
- 7. Separation of chloroplast pigments using paper chromatography technique.
- 8. Demonstration of Polyphenol oxidase enzyme activity (Potato tuber or Apple fruit)
- 9. Anatomy of C3, C4 and CAM leaves
- 10. Estimation of protein by biuret method/Lowry method
- Minor experiments Osmosis, Arc-auxonometer, ascent of sap through xylem, cytoplasmic streaming.

Model Question Paper for Practical Examination

Semester – IV/ Botany Core Course – 4

Plant Physiology and Metabolism

Max. Time: 3 Hrs.	Max. Marks: 50

- 1. Conduct the experiment 'A' (Major experiment), write aim, principle, material and apparatus/equipment, procedure, tabulate results and make conclusion. 20 M
- Demonstrate the experiment 'B' (Minor experiment), write the principle, procedure and give inference.
 10 M
- 3. Identify the following with apt reasons.
 3 x 4 = 12 M
 C. Plant water relations / Mineral nutrition
 - D. Plant metabolism
 - E. Plant growth and development
- 4. Record + Viva-voce 5+3=8 M

Suggested co-curricular activities for Botany Core Course-4 in Semester-IV:

A. Measurable :

- a. Student seminars :
- 1. Antitranspirants and their significance in crop physiology and horticulture.
- 2. Natural chelating agents in plants.
- 3. Criteria of essentiality of elements and beneficial elements.
- 4. Hydroponics, aquaponics and aeroponics.
- 5. Mycorrhizal association and mineral nutrition in plants.
- 6. Non-proteinaceous enzymes.
- 7. Respiratory inhibitors.
- 8. Structure of ATPase and Chemiosmotic hypothesis.
- 9. Transpiration and photosynthesis a compromise.
- 10. Amphibolic pathways and bypass pathways in plants.
- 11. Non-biological nitrogen fixation.
- 12. Role of Hydrogenase in nitrogen fixation.
- 13. Plant lectins their role in plants and use in medicine and medical research.

b. Student Study Projects :

- 1. Stomatal densities among different groups of plants.
- 2. Various treatments (salt, cold, high temperature, heavy metals) and their effects on seed germination.
- Effects of plant hormones (IAA, Gibberellin and Kinetin) on Seed Germination.
- 4. Diurnal variation of stomatal behavior in CAM and C3 plants found in local area.
- 5. Effects of nitrogen fertilizer on plant growth.
- 6. Enumeration of C3, C4 and CAM plants in the local area.
- 7. Effect of different light wavelengths (red light, green light, blue light) on apparent photosynthesis in terms of growth.
- 8. Light effects on leaf growth and leaf orientation.
- 9. Artificial Fruit Ripening Process by various treatments (carbide and ethylene).
- 10. Study of relative water content and water retention by leaves under different environments.
- 11. Study of soil nutrients in local agricultural fields.
- 12. Study of mineral deficiency symptoms of various crops of local area.
- 13. Study of local weeds in crop fields.
- 14. Studies on seed storage proteins, oils and starch in local millets and pulse crops.
- 15. Making a report on LDPs, SDPs and DNPs in their locality.
- c. Assignments: Written assignment at home / during '0' hour at college;

preparation of charts with drawings, making models etc., on topics included in

syllabus. B. General :

- Group Discussion (GD)/ Quiz/ Just A Minute (JAM) on different modules in syllabus of the course.
- 2. Visit to a Plant Physiology laboratory in a University or Physiology division in a Agriculture/Horticulture University/Research station.